Dissemin is shutting down on January 1st, 2025

Published in

American Phytopathological Society, Phytopathology, 4(87), p. 404-413, 1997

DOI: 10.1094/phyto.1997.87.4.404

Links

Tools

Export citation

Search in Google Scholar

Purification and Properties of a New Virus from Black Currant, Its Affinities with Nepoviruses, and Its Close Association with Black Currant Reversion Disease

Journal article published in 1997 by A. Lemmetty, S. Latvala, A. T. Jones, P. Susi ORCID, W. J. McGavin, K. Lehto
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Black currant reversion is a virus-like disease whose causal agent has not been identified. In rooted cuttings of a black currant plant affected with the severe form of the disease, pronounced chlorotic line patterns and ringspots developed in newly emerging leaves. From such symptom-bearing leaves, a virus was mechanically transmitted with difficulty to Chenopodium quinoa and, from this host, to other herbaceous test plants. The virus was purified and partially characterized, and the purified viri-ons were used for antiserum production. Virus particles were isometric, approximately 27 nm in diameter, and sedimented as two nucleoprotein components. They contained a protein species with a molecular mass of 55 kDa, which was readily degraded into a 54-kDa protein and two major RNA components of about 6,700 and 7,700 nucleotides (nt), each with a poly(A) tail. Most of these properties are shared by nepoviruses, but the virus was serologically unrelated to 14 nepoviruses or putative nepovi-ruses tested. However, the deduced sequence of 1,260 nt at the 3′ end of one of the viral RNA species was distinct from any known viral sequence, except that it contained short regions of homology to the 3′ terminal sequences of RNAs of seven other nepoviruses and two comovi-ruses. To detect this virus in Ribes plants, primers were designed from the known sequence to amplify a 210-nt region of the cDNA of the virus RNA using an immunocapture reverse transcriptase polymerase chain reaction (IC-RT-PCR) protocol. Using this assay for the virus, we associated its presence with two recognized forms of black currant reversion disease occurring in Finland, Scotland, or New Zealand. We also detected the virus in vector gall mites from reverted plants and in black currant plants on which such vector mites had fed. However, the virus was not detected by IC-RT-PCR in known healthy Ribes plants; in Ribes plants free from reversion, but affected by three other distinct virus-like diseases of Ribes; or in plants infected with arabis mosaic, strawberry latent ringspot, or raspberry ringspot nepoviruses. These data suggest that this virus may be the causal agent of reversion disease, and it is tentatively called black currant reversion associated virus.