Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, Lipids in Health and Disease, 1(8), 2009

DOI: 10.1186/1476-511x-8-18

Links

Tools

Export citation

Search in Google Scholar

The effect of dietary red palm oil on the functional recovery of the ischaemic/reperfused isolated rat heart: the involvement of the PI3-Kinase signaling pathway

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We have previously shown that dietary red palm oil (RPO) supplementation improves functional recovery in hearts subjected to ischaemia/reperfusion-induced injury. Unfortunately, the cellular and molecular mechanisms responsible for this phenomenon are still poorly understood and no knowledge exists regarding the effects of RPO supplementation on the phosphoinositide 3-kinase (PI3-K) signaling pathway and apoptosis during ischaemia/reperfusion injury. Therefore, the aims of the present study were three fold: (i) to establish the effect of RPO on the functional recovery of the heart after ischaemia/reperfuion injury; (ii) to determine the effect of the PI3-K pathway in RPO-induced protection with the aid of an inhibitor (wortmannin); and (iii) to evaluate apoptosis in our model. Wistar rats were fed a standard rat chow control diet or a control diet plus 7 g RPO/kg for six weeks. Hearts were excised and mounted on a Langendorff perfusion apparatus. Mechanical function was measured after a 25 min period of total global ischaemia followed by 30 minutes of reperfusion. Hearts subjected to the same conditions were freeze-clamped for biochemical analysis at 10 min during reperfusion to determine the involvement of the PI3-Kinase signaling pathway and apoptosis in our model. Dietary RPO supplementation significantly increased % rate pressure product recovery during reperfusion (71.0 ± 6.3% in control vs 92.36 ± 4.489% in RPO; p < 0.05). The % rate pressure product recovery was significantly reduced when wortmannin was added during perfusion (92.36 ± 4.489% in the RPO group vs 75.21 ± 5.26% in RPO + Wm). RPO + Wm also significantly attenuated PI3-K induction compared with the RPO group (59.2 ± 2.8 pixels in RPO vs 37.9 ± 3.4 pixels in RPO + Wm). We have also demonstrated that PI3-K inhibition induced PARP cleavage (marker of apoptosis) in the hearts during ischaemia/reperfusion injury and that RPO supplementation counteracted this effect.