Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 6(110), 2013

DOI: 10.1073/pnas.1219126110

Links

Tools

Export citation

Search in Google Scholar

Mechanistic basis of infertility of mouse intersubspecific hybrids

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Hybrid sterility contributes to speciation by restricting gene flow between related taxa. Although four hybrid sterility genes have been identified in Drosophila and mouse so far, the underlying molecular mechanisms are largely unknown. We describe extensive asynapsis of chromosomes in male and female meiosis of F1 hybrids between two closely related mouse subspecies. Using the intersubspecific chromosome-substitution strains, we demonstrate that the heterospecific pairing of homologous chromosomes is a preexisting condition of asynapsis and may represent a universal mechanism of pachytene arrest in interspecific hybrids. Sex-specific manifestation of asynapsis can explain the mechanism of Haldane’s rule.