Published in

Sage Publications., Journal of Endotoxin Research, 6(7), p. 456-460

DOI: 10.1177/09680519010070061101

Sage Publications., Journal of Endotoxin Research, 6(7), p. 456-460

DOI: 10.1179/096805101101533089

Links

Tools

Export citation

Search in Google Scholar

Macrophage migration inhibitory factor (MIF) modulates innate immune responses induced by endotoxin and Gram-negative bacteria

Journal article published in 2001 by Thierry Roger ORCID, Michel P. Glauser, Glauser Mp, Thierry Calandra ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Discovered in the early 1960s as a T-cell cytokine, MIF has emerged to be an important mediator of the innate immune system. MIF was identified recently to be released by a vast array of cells, including monocytes/macrophages, T-cells, B-cells, endocrine cells and epithelial cells in response to infection and stress. Bacteria, microbial toxins and cytokines have been shown to be powerful inducers of MIF secretion by macrophages. MIF stimulates the expression of pro-inflammatory mediators by immune cells and functions to counterbalance the anti-inflammatory and immunosuppressive effects of glucocorticoids. Like TNF and IL-1, MIF plays an important role in host responses to infection. Recombinant MIF was found to exacerbate lethal endotoxemia or bacterial sepsis when co-injected with LPS or Escherichia coli in mice. Conversely, MIF knockout mice or mice treated with anti-MIF antibodies were protected from shock induced by LPS, staphylococcal exotoxins or bacterial peritonitis, even when anti-MIF therapy was started after the onset of infection. Given the central role played by MIF in innate immune responses against microbial pathogens and in the regulation of inflammatory responses, pharmacological modulation of MIF production or neutralization of MIF activity could have broad clinical applications and may offer new treatment options for the management of patients with severe sepsis or septic shock.