Published in

SAGE Publications, Journal of Reinforced Plastics and Composites, 16-17(27), p. 1709-1721, 2008

DOI: 10.1177/0731684407084663

Links

Tools

Export citation

Search in Google Scholar

Effects of Moisture on Dynamic Mechanical Properties of Wood Fiber Composites Studied by Dynamic FT-IR Spectroscopy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Wood fiber reinforced polylactide is a biodegradable composite where both fibers and matrix are from renewable resources. In the development of such new materials, information on mechanical behavior on the macroscopic and the molecular level is useful. In this study, dynamic Fourier transform infrared (FT-IR) spectroscopy is used to measure losses at the molecular level during cyclic tensile loading for bonds that are characteristic of the cellulosic fibers and the polylactid matrix. This molecular behavior is compared with measured macroscopic hysteresis losses for different moisture levels. The results show that moisture ingress will transfer the load from the fibers to the matrix, and that a more efficient fiber-matrix interface would diminish mechanical losses. Although the dynamic FT-IR spectroscopy method is still qualitative, this investigation shows that it can provide information on the stress transfer of the constituents in wood fiber reinforced plastics.