Published in

American Chemical Society, Environmental Science and Technology, 5(43), p. 1419-1424, 2009

DOI: 10.1021/es8021039

Links

Tools

Export citation

Search in Google Scholar

Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Emission factors for black carbon (BC) and particle number (PN) were measured from 226 individual heavy-duty (HD) diesel-fueled trucks driving through a 1 km-long California highway tunnel in August 2006. Emission factors were based on concurrent increases in BC, PN, and CO{sub 2}B concentrations (measured at 1 Hz) that corresponded to the passage of individual HD trucks. The distributions of BC and PN emission factors from individual HD trucks are skewed, meaning that a large fraction of pollution comes from a small fraction of the in-use vehicle fleet. The highest-emitting 10% of trucks were responsible for {approx} 40% of total BC and PN emissions from all HD trucks. BC emissions were log-normally distributed with a mean emission factor of 1.7 g kg {sup -1} and maximum values of {approx} 10 g kg{sup -1}. Corresponding values for PN emission factors were 4.7 x 10{sup 15} and 4 x 10{sup 16} kg{sup -1}. There was minimal overlap among high-emitters of these two pollutants: only 1 of the 226 HD trucks measured was found to be among the highest 10% for both BC and PN. Monte Carlo resampling of the distribution of BC emission factors observed in this study revealed that uncertainties (1{sigma}) in extrapolating from a random sample of n HD trucks to a population mean emission factor ranged from {+-} 43% for n = 10 to {+-} 8% for n = 300, illustrating the importance of sufficiently large vehicle sample sizes in emissions studies. Studies with low sample sizes are also more easily biased due to misrepresentation of high-emitters. As vehicles become cleaner on average in future years, skewness of the emissions distributions will increase, and thus sample sizes needed to extrapolate reliably from a subset of vehicles to the entire in-use vehicle fleet are expected to become more of a challenge.