Dissemin is shutting down on January 1st, 2025

Published in

Hans Publishers, Astronomy & Astrophysics, (553), p. A132

DOI: 10.1051/0004-6361/201321371

Links

Tools

Export citation

Search in Google Scholar

The deepestHerschel-PACS far-infrared survey: number counts and infrared luminosity functions from combined PEP/GOODS-H observations

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present results from the deepest Herschel-PACS (Photodetector Array Camera and Spectrometer) far-infrared blank field extragalactic survey, obtained by combining observations of the GOODS (Great Observatories Origins Deep Survey) fields from the PACS Evolutionary Probe (PEP) and GOODS-Herschel key programmes. We describe data reduction and the construction of images and catalogues. In the deepest parts of the GOODS-S field, the catalogues reach 3-sigma depths of 0.9, 0.6 and 1.3 mJy at 70, 100 and 160 um, respectively, and resolve ~75% of the cosmic infrared background at 100um and 160um into individually detected sources. We use these data to estimate the PACS confusion noise, to derive the PACS number counts down to unprecedented depths and to determine the infrared luminosity function of galaxies down to LIR=10^11 Lsun at z~1 and LIR=10^12 Lsun at z~2, respectively. For the infrared luminosity function of galaxies, our deep Herschel far-infrared observations are fundamental because they provide more accurate infrared luminosity estimates than those previously obtained from mid-infrared observations. Maps and source catalogues (>3-sigma) are now publicly released. Combined with the large wealth of multi-wavelength data available for the GOODS fields, these data provide a powerful new tool for studying galaxy evolution over a broad range of redshifts. ; Comment: Accepted for publication in A&A; 22 pages, 13 figures; V2: updated to match accepted version