Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, BMC Structural Biology, 1(9), 2009

DOI: 10.1186/1472-6807-9-63

Links

Tools

Export citation

Search in Google Scholar

Structural and functional characteristics of xenavidin, the first frog avidin from Xenopus tropicalis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

BioMed Central Open access ; Background Avidins are proteins with extraordinarily high ligand-binding affinity, a property which is used in a wide array of life science applications. Even though useful for biotechnology and nanotechnology, the biological function of avidins is not fully understood. Here we structurally and functionally characterise a novel avidin named xenavidin, which is to our knowledge the first reported avidin from a frog. Results Xenavidin was identified from an EST sequence database for Xenopus tropicalis and produced in insect cells using a baculovirus expression system. The recombinant xenavidin was found to be homotetrameric based on gel filtration analysis. Biacore sensor analysis, fluorescently labelled biotin and radioactive biotin were used to evaluate the biotin-binding properties of xenavidin - it binds biotin with high affinity though less tightly than do chicken avidin and bacterial streptavidin. X-ray crystallography revealed structural conservation around the ligand-binding site, while some of the loop regions have a unique design. The location of structural water molecules at the entrance and/or within the ligand-binding site may have a role in determining the characteristic biotin-binding properties of xenavidin. Conclusion The novel data reported here provide information about the biochemically and structurally important determinants of biotin binding. This information may facilitate the discovery of novel tools for biotechnology.