BioMed Central, Arthritis Research and Therapy, 6(13), p. R199
DOI: 10.1186/ar3530
Full text: Download
Abstract Introduction Systemic lupus erythematosus (SLE or lupus) is a chronic autoimmune disease, and kidney involvement with SLE, a.k.a. lupus nephritis (LN), is a frequent and severe complication of SLE that increases patient morbidity and mortality. About 50% of patients with SLE encounter renal abnormalities which, if left untreated, can lead to end-stage renal disease. Kidney biopsy is considered the criterion standard for diagnosis and staging of LN using the International Society of Nephrology/Renal Pathology Society (ISN/RPS) classification, which was developed to help predict renal outcomes and assist with medical decision-making. However, kidney biopsy-based classification of LN is highly invasive and impractical for real-time monitoring of LN status. Here, nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling was used to identify urinary metabolites that discriminated between proliferative and pure membranous LN as defined by the ISN/RPS classification, and between LN and primary focal segmental glomerulosclerosis (FSGS). Methods Metabolic profiling was conducted using urine samples of patients with proliferative LN without membranous features (Class III/IV; n = 7) or pure membranous LN (Class V; n = 7). Patients with primary FSGS and proteinuria ( n = 10) served as disease controls. For each patient, demographic information and clinical data was obtained and a random urine sample collected to measure NMR spectra. Data and sample collection for patients with LN occurred around the time of kidney biopsy. Metabolic profiling analysis was done by visual inspection and principal component analysis. Results Urinary citrate levels were 8-fold lower in Class V LN compared to Class III/IV patients, who had normal levels of urinary citrate ( P 10-fold lower levels of urinary taurine compared to Class V patients, who had mostly normal levels ( P