Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Physiological Measurement, 8(32), p. 1083-1101

DOI: 10.1088/0967-3334/32/8/006

Links

Tools

Export citation

Search in Google Scholar

Predicting EEG complexity from sleep macro and microstructure

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This work investigates the relation between the complexity of electroencephalography (EEG) signal, as measured by fractal dimension (FD), and normal sleep structure in terms of its macrostructure and microstructure. Sleep features are defined, encoding sleep stage and cyclic alternating pattern (CAP) related information, both in short and long term. The relevance of each sleep feature to the EEG FD is investigated, and the most informative ones are depicted. In order to quantitatively assess the relation between sleep characteristics and EEG dynamics, a modeling approach is proposed which employs subsets of the sleep macrostructure and microstructure features as input variables and predicts EEG FD based on these features of sleep micro/macrostructure. Different sleep feature sets are investigated along with linear and nonlinear models. Findings suggest that the EEG FD time series is best predicted by a nonlinear support vector machine (SVM) model, employing both sleep stage/transitions and CAP features at different time scales depending on the EEG activation subtype. This combination of features suggests that short-term and long-term history of macro and micro sleep events interact in a complex manner toward generating the dynamics of sleep.