Published in

American Physiological Society, American Journal of Physiology: Cell Physiology, 5(294), p. C1227-C1233, 2008

DOI: 10.1152/ajpcell.00328.2007

Links

Tools

Export citation

Search in Google Scholar

H9c2 cardiomyoblasts produce thyroid hormone

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Thyroid hormone acts on a wide range of tissues. In the cardiovascular system, thyroid hormone is an important regulator of cardiac function and cardiovascular hemodynamics. Although some early reports in the literature suggested an unknown extrathyroidal source of thyroid hormone, it is currently thought to be produced exclusively in the thyroid gland, a highly specialized organ with the sole function of generating, storing, and secreting thyroid hormone. Whereas most of the proteins necessary for thyroid hormone synthesis are thought to be expressed exclusively in the thyroid gland, we now have found evidence that all of these proteins, i.e., thyroglobulin, DUOX1, DUOX2, the sodium-iodide symporter, pendrin, thyroid peroxidase, and thyroid-stimulating hormone receptor, are also expressed in cardiomyocytes. Furthermore, we found thyroglobulin to be transiently upregulated in an in vitro model of ischemia. When performing these experiments in the presence of 125I, we found that 125I was integrated into thyroglobulin and that under ischemia-like conditions the radioactive signal in thyroglobulin was reduced. Concomitantly we observed an increase of intracellularly produced, 125I-labeled thyroid hormone. In conclusion, our findings demonstrate for the first time that cardiomyocytes produce thyroid hormone in a manner adapted to the cell's environment.