Links

Tools

Export citation

Search in Google Scholar

Statistical power calculations for mixed pharmacokinetic study designs using a population approach

Journal article published in 2014 by Frank Kloprogge, Ja Simpson ORCID, Npj Day, Nj White, Joel Tarning
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Simultaneous modelling of dense and sparse pharmacokinetic data is possible with a population approach. To determine the number of individuals required to detect the effect of a covariate, simulation-based power calculation methodologies can be employed. The Monte Carlo Mapped Power method (a simulation-based power calculation methodology using the likelihood ratio test) was extended in the current study to perform sample size calculations for mixed pharmacokinetic studies (i.e. both sparse and dense data collection). A workflow guiding an easy and straightforward pharmacokinetic study design, considering also the cost-effectiveness of alternative study designs, was used in this analysis. Initially, data were simulated for a hypothetical drug and then for the anti-malarial drug, dihydroartemisinin. Two datasets (sampling design A: dense; sampling design B: sparse) were simulated using a pharmacokinetic model that included a binary covariate effect and subsequently re-estimated using (1) the same model and (2) a model not including the covariate effect in NONMEM 7.2. Power calculations were performed for varying numbers of patients with sampling designs A and B. Study designs with statistical power >80% were selected and further evaluated for cost-effectiveness. The simulation studies of the hypothetical drug and the anti-malarial drug dihydroartemisinin demonstrated that the simulation-based power calculation methodology, based on the Monte Carlo Mapped Power method, can be utilised to evaluate and determine the sample size of mixed (part sparsely and part densely sampled) study designs. The developed method can contribute to the design of robust and efficient pharmacokinetic studies. © 2014 The Author(s).