Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 22(109), p. 8495-8500, 2012

DOI: 10.1073/pnas.1201263109

Links

Tools

Export citation

Search in Google Scholar

Dermatophytic defensin with antiinfective potential

Journal article published in 2012 by Shunyi Zhu, Bin Gao, Peta J. Harvey, David J. Craik ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fungi are a newly emerging source of peptide antibiotics with therapeutic potential. Here, we report 17 new fungal defensin-like peptide (fDLP) genes and the detailed characterization of a corresponding synthetic fDLP (micasin) from a dermatophyte in terms of its structure, activity and therapeutic potential. NMR analysis showed that synthetic micasin adopts a “hallmark” cysteine-stablized α-helical and β-sheet fold. It was active on both Gram-positive and Gram-negtive bacteria, and importantly it killed two clinical isolates of methicillin-resistant Staphylococcus aureus and the opportunistic pathogen Pseudomonas aeruginosa at low micromolar concentrations. Micasin killed approximately 100% of treated bacteria within 3 h through a membrane nondisruptive mechanism of action, and showed extremely low hemolysis and high serum stability. Consistent with these functional properties, micasin increases survival in mice infected by the pathogenic bacteria in a peritonitis model. Our work represents a valuable approach to explore novel peptide antibiotics from a large resource of fungal genomes.