Oxford University Press, The Journal of Clinical Endocrinology & Metabolism, 3(96), p. E566-E576, 2011
DOI: 10.1210/jc.2010-2292
Oxford University Press, Endocrinology, 2(152), p. 743-743, 2011
DOI: 10.1210/endo.152.2.zee743
Oxford University Press, Endocrine Reviews, 1(32), p. 156-157, 2011
DOI: 10.1210/edrv.32.1.zef156b
Full text: Download
Abstract Context: GnRH deficiency is a rare genetic disorder of absent or partial pubertal development. The clinical and genetic characteristics of GnRH-deficient women have not been well-described. Objective: To determine the phenotypic and genotypic spectrum of a large series of GnRH-deficient women. Design, Setting, and Subjects: Retrospective study of 248 females with GnRH deficiency evaluated at an academic medical center between 1980 and 2010. Main Outcome Measures: Clinical presentation, baseline endogenous GnRH secretory activity, and DNA sequence variants in 11 genes associated with GnRH deficiency. Results: Eighty-eight percent had undergone pubarche, 51% had spontaneous thelarche, and 10% had 1-2 menses. Women with spontaneous thelarche were more likely to demonstrate normal pubarche (P = 0.04). In 27% of women, neuroendocrine studies demonstrated evidence of some endogenous GnRH secretory activity. Thirty-six percent (a large excess relative to controls) harbored a rare sequence variant in a gene associated with GnRH deficiency (87% heterozygous and 13% biallelic), with variants in FGFR1 (15%), GNRHR (6.6%), and PROKR2 (6.6%) being most prevalent. One woman had a biallelic variant in the X-linked gene, KAL1, and nine women had heterozygous variants. Conclusions: The clinical presentation of female GnRH deficiency varies from primary amenorrhea and absence of any secondary sexual characteristics to spontaneous breast development and occasional menses. In this cohort, rare sequence variants were present in all of the known genes associated with GnRH deficiency, including the novel identification of GnRH-deficient women with KAL1 variants. The pathogenic mechanism through which KAL1 variants disrupt female reproductive development requires further investigation.