Springer Verlag, Journal of Digital Imaging, 1(24), p. 58-65
DOI: 10.1007/s10278-009-9270-0
Full text: Download
The performance of a commercial digital mammographic system working in 2D planar versus tomosynthesis mode was evaluated in terms of the image signal difference to noise ratio (SDNR). A contrast detail phantom was obtained embedding 1 cm Plexiglas, including 49 holes of different diameter and depth, between two layers containing a breast-simulating material. The phantom was exposed with the details plane perpendicular to the X-ray beam using the manufacturer's standard clinical breast acquisition parameters. SDNR in the digital breast tomosynthesis (DBT) images was higher than that of the full-field digital mammography (FFDM) for 38 out of 49 details in complex background conditions. These differences (p < 0.05) are statistically significant for 19 details out of 38. The relative SDNR results for DBT and FFDM images showed a dependence on the diameter of the details considered. This paper proposes an initial framework for a global image quality evaluation for commercial systems that can operate with different image acquisition modality using the same detector.