Published in

Wiley, Annals of the New York Academy of Sciences, 1(1041), p. 173-181, 2005

DOI: 10.1196/annals.1282.025

Links

Tools

Export citation

Search in Google Scholar

The relaxin gene-knockout mouse: a model of progressive fibrosis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Relaxin is well known for its actions on collagen remodeling. To improve our understanding of the physiologic role(s) of relaxin, the relaxin gene-knockout (RLX-KO) mouse was established by our group and subsequently phenotyped. Pregnant RLX-KO mice underwent inadequate development of the pubic symphysis as well as the mammary glands and nipples compared to wild-type mice, thus preventing lactation. Later studies showed that these deficiencies were associated with increased collagen, primarily in the nipple and vagina. Analysis of male RLX-KO mice also demonstrated inadequate reproductive tract development. The testis, epididymis, and prostate of RLX-KO mice showed delayed tissue maturation and growth associated with increased collagen deposition. In nonreproductive tissues, an age-related increase in interstitial collagen (fibrosis) was also detected in the lung, heart, and kidneys of RLX-KO mice and was associated with organ dysfunction. From 6-9 months of age and onwards, all organs of RLX-KO mice, particularly male mice, underwent progressive increases in tissue weight and collagen content (all P < .05) compared with wild-type animals. The increased fibrosis contributed to bronchiole epithelium thickening and alveolar congestion (lung), atrial hypertrophy and increased ventricular chamber stiffness (heart) in addition to glomerulosclerosis (kidney). Treatment of RLX-KO mice with recombinant human relaxin in early and developed stages of fibrosis caused the reversal of collagen deposition in the lung, heart, and kidneys. Together, these findings suggest that relaxin is a naturally occurring inhibitor of collagen deposition during normal development, aging, and pregnancy and can be used to prevent the progression of fibrosis.