Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 7(106), p. 2348-2352, 2009

DOI: 10.1073/pnas.0808146106

Links

Tools

Export citation

Search in Google Scholar

Protection from lethal Gram-negative bacterial sepsis by targeting Toll-like receptor 4

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Toll-like receptor 4 (TLR4), the signal-transducing molecule of the LPS receptor complex, plays a fundamental role in the sensing of LPS from Gram-negative bacteria. Activation of TLR4 signaling pathways by LPS is a critical upstream event in the pathogenesis of Gram-negative sepsis, making TLR4 an attractive target for novel antisepsis therapy. To validate the concept of TLR4-targeted treatment strategies in Gram-negative sepsis, we first showed that TLR4 −/− and myeloid differentiation primary response gene 88 (MyD88) −/− mice were fully resistant to Escherichia coli –induced septic shock, whereas TLR2 −/− and wild-type mice rapidly died of fulminant sepsis. Neutralizing anti-TLR4 antibodies were then generated using a soluble chimeric fusion protein composed of the N-terminal domain of mouse TLR4 (amino acids 1–334) and the Fc portion of human IgG1. Anti-TLR4 antibodies inhibited intracellular signaling, markedly reduced cytokine production, and protected mice from lethal endotoxic shock and E. coli sepsis when administered in a prophylactic and therapeutic manner up to 13 h after the onset of bacterial sepsis. These experimental data provide strong support for the concept of TLR4-targeted therapy for Gram-negative sepsis.