Dissemin is shutting down on January 1st, 2025

Published in

Institute of Organic Chemistry & Biochemistry, Collection of Czechoslovak Chemical Communications, 11(75), p. 1115-1123

DOI: 10.1135/cccc2010073

Links

Tools

Export citation

Search in Google Scholar

Revisiting B20H16 by means of a joint computational/experimental NMR approach

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

A new synthesis of the fused macropolyhedral boron cluster B20H16 is described and its molecular structure in solution discussed, based on multi-nuclear NMR spectra, including COSY measurements, in relation to its previously elucidated solid-state structure. To verify the conclusions from the NMR study, experimentally determined chemical shifts are compared with calculated values at the GIAO-B3LYP level with a TZP basis set by Huzinaga. There is a very good agreement between the experimental and computed δ(11B) values, suggesting that the MP2/6-31G* internal coordinates are a reasonable representation of the molecular geometry of this twenty-vertex cluster in solution that is essentially the same as its solid-state structure. A computational analysis of the FMO orbitals of B20H16, in particular of the LUMO, reveals that the four naked boron atoms, common for two shared icosahedral subclusters, are the reactive sites of this D2d-symmetrical molecule.