Taylor and Francis Group, International Journal of Remote Sensing, 14(18), p. 3091-3096, 1997
Full text: Unavailable
Evapotranspiration is the dominant energy exchange process in dense vegetated environments with an adequate water supply. If water is available vegetation canopy temperatures do not respond immediately upon intercepting solar radiation because of the apportionment of absorbed solar radiation into sensible and latent heat. This lag in the thermal conditions of vegetation canopy following the incident solar flux can be even more complex after sunrise because the presence of dew on the foliage requires more available energy investment in evaporating water and less energy spent in warming the foliage. The aim of this Letter, which is based on remotely-sensed thermal data obtained from Landsat Thematic Mapper in the daytime of a clear summer day, is to investigate the relationship between canopy surface temperatures and the incident solar radiation for a forested montainous landscape of central Italy. Results show that, under the conditions of our experiment, a time lag of one hour considerably increases the linear relation between vegetation canopy temperature and local solar illumination angle.