Dissemin is shutting down on January 1st, 2025

Published in

Taylor and Francis Group, International Journal of Remote Sensing, 14(18), p. 3091-3096, 1997

DOI: 10.1080/014311697217251

Links

Tools

Export citation

Search in Google Scholar

Relation between vegetation canopy surface temperature and the Sun-surface geometry in a mountainous region of central Italy

Journal article published in 1997 by Carlo Ricotta, Giancarlo C. Avena, S. Teggi ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Evapotranspiration is the dominant energy exchange process in dense vegetated environments with an adequate water supply. If water is available vegetation canopy temperatures do not respond immediately upon intercepting solar radiation because of the apportionment of absorbed solar radiation into sensible and latent heat. This lag in the thermal conditions of vegetation canopy following the incident solar flux can be even more complex after sunrise because the presence of dew on the foliage requires more available energy investment in evaporating water and less energy spent in warming the foliage. The aim of this Letter, which is based on remotely-sensed thermal data obtained from Landsat Thematic Mapper in the daytime of a clear summer day, is to investigate the relationship between canopy surface temperatures and the incident solar radiation for a forested montainous landscape of central Italy. Results show that, under the conditions of our experiment, a time lag of one hour considerably increases the linear relation between vegetation canopy temperature and local solar illumination angle.