Published in

MDPI, Sensors, 1(13), p. 703-720, 2013

DOI: 10.3390/s130100703

Links

Tools

Export citation

Search in Google Scholar

A Homodyne Quadrature Laser Interferometer for Micro-Asperity Deformation Analysis

Journal article published in 2013 by Aljaž PogaČnik, Tomaž Požar ORCID, Mitjan Kalin, Janez Možina
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report on the successful realization of a contactless, non-perturbing, displacement-measuring system for characterizing the surface roughness of polymer materials used in tribological applications. A single, time-dependent, scalar value, dubbed the collective micro-asperity deformation, is extracted from the normal-displacement measurements of normally loaded polymer samples. The displacement measurements with a sub-nanometer resolution are obtained with a homodyne quadrature laser interferometer. The measured collective micro-asperity deformation is critical for a determination of the real contact area and thus for the realistic contact conditions in tribological applications. The designed measuring system senses both the bulk creep as well as the micro-asperity creep occurring at the roughness peaks. The final results of our experimental measurements are three time-dependent values of the collective micro-asperity deformation for the three selected surface roughnesses. These values can be directly compared to theoretical deformation curves, which can be derived using existing real-contact-area models.