Published in

Elsevier, Journal of Biological Chemistry, 33(286), p. 28723-28728, 2011

DOI: 10.1074/jbc.m110.202853

Links

Tools

Export citation

Search in Google Scholar

Dual Inhibition of α/β-Hydrolase Domain 6 and Fatty Acid Amide Hydrolase Increases Endocannabinoid Levels in Neurons*

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Agonists at cannabinoid receptors, such as the phytocannabinoid Δ9-tetrahydrocannabinol, exert a remarkable array of therapeutic effects but are also associated with undesirable psychoactive side effects. Conversely, targeting enzymes that hydrolyze endocannabinoids (eCBs) allows for more precise fine-tuning of cannabinoid receptor signaling, thus providing therapeutic relief with reduced side effects. Here, we report the development and characterization of an inhibitor of eCB hydrolysis, UCM710, which augments both N-arachidonoylethanolamine and 2-arachidonoylglycerol levels in neurons. This compound displays a unique pharmacological profile in that it inhibits fatty acid amide hydrolase and α/β-hydrolase domain 6 but not monoacylglycerol lipase. Thus, UCM710 represents a novel tool to delineate the therapeutic potential of compounds that manipulate a subset of enzymes that control eCB signaling.