Published in

American Chemical Society, Biochemistry, 7(54), p. 1525-1533, 2015

DOI: 10.1021/bi5014613

Links

Tools

Export citation

Search in Google Scholar

Nuclear magnetic resonance spectroscopy characterization of interaction of Tau with DNA and its regulation by phosphorylation.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The capacity of endogenous Tau to bind DNA has been recently identified in neurons under physiological or oxidative stress conditions. Characterization of the protein domains involved in Tau-DNA complex formation is an essential first step in clarifying the contribution of Tau-DNA interactions to neurological biological processes. To identify the amino acid residues involved in the interaction of Tau with oligonucleotides, we have characterized a Tau-DNA complex using nuclear magnetic resonance spectroscopy. Interaction of an AT-rich or GC-rich 22 bp oligonucleotide with Tau showed multiple points of anchoring along the intrinsically disordered Tau protein. The main sites of contact characterized here correspond to the second half of the proline-rich domain (PRD) of Tau and the R2 repeat in the microtubule binding domain. This latter interaction site includes the PHF6* sequence known to govern Tau aggregation. The characterization was pursued by studying the binding of phosphorylated forms of Tau, displaying multiple phosphorylation sites mainly in the PRD, to the same oligonucleotide. No interaction of phospho-Tau with the oligonucleotide was detected, suggesting that pathological Tau phosphorylation could affect the physiological function of Tau mediated by DNA binding.