Links

Tools

Export citation

Search in Google Scholar

Neutralization of Plasmodium falciparum merozoites by antibodies against PfRH5.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

There is intense interest in induction and characterization of strain-transcending neutralizing antibody against antigenically variable human pathogens. We have recently identified the human malaria parasite Plasmodium falciparum reticulocyte-binding protein homologue 5 (PfRH5) as a target of broadly-neutralizing antibodies, but there is little information regarding the functional mechanism(s) of antibody-mediated neutralization. Here, we report that vaccine-induced polyclonal anti-PfRH5 antibodies inhibit the tight attachment of merozoites to erythrocytes, and are capable of blocking the interaction of PfRH5 with its receptor basigin. Furthermore, by developing anti-PfRH5 monoclonal antibodies (mAbs), we provide evidence that i) the ability to block the PfRH5-basigin interaction in vitro is predictive of functional activity, but absence of blockade does not predict absence of functional activity; ii) neutralizing mAbs bind spatially-related epitopes on the folded protein, involving at least two defined regions of the PfRH5 primary sequence; iii) a brief exposure window of PfRH5 is likely to necessitate rapid binding of antibody to neutralize parasites; and iv) intact bivalent IgG contributes to but is not necessary for parasite neutralization. These data provide important insight into the mechanisms of broadly-neutralizing anti-malaria antibodies and further encourage anti-PfRH5 based malaria prevention efforts.