Published in

Oxford University Press, Nucleic Acids Research, 11(27), p. 2248-2255, 1999

DOI: 10.1093/nar/27.11.2248

Links

Tools

Export citation

Search in Google Scholar

Can G-C Hoogsteen-wobble pairs contribute to the stability of d(G{middle dot}C-C) triplexes?

Journal article published in 1999 by R. Soliva, F. J. Luque ORCID, M. Orozco
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Quantum mechanics, molecular dynamics and statistical mechanics methods are used to analyze the importance of neutral Hoogsteen-wobble G.C pairing in the stabilization of triple helices based on the poly-(G.C-C) trio at neutral pH and low ionic strength. In spite of the existence of a single hydrogen bond, the Hoogsteen-wobble G.C pair is found to be quite stable both in gas phase and solvated DNA. Molecular dynamics simulations of different triplexes based on the d(G.C-C) trio leads to stable structures if the neutral d(G.C-C) steps stabilized by Hoogsteen-wobble pairs are mixed with d(G.C-C+) steps. Finally, high level ab initio calculations and thermodynamic integration techniques are used to determine the relative stability of G.C wobble and G.C imino pairings. It is found that triplexes containing the imino pairing are slightly more stable structures than those with the wobble one, due mainly to a better stacking.