Dissemin is shutting down on January 1st, 2025

Published in

CSIRO Publishing, Reproduction, Fertility and Development, 5(18), p. 501

DOI: 10.1071/rd05051

Links

Tools

Export citation

Search in Google Scholar

Purification of granulosa cells from human ovarian follicular fluid using granulosa cell aggregates

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Human follicular fluid can provide a source of human granulosa cells for scientific study. However, removing potentially contaminating cells, such as white and red blood cells, is important for molecular and in vitro studies. We have developed a purification technique for human granulosa cells based on the selection of cellular aggregates. Human granulosa cells from 21 IVF patients were collected. A 50% Percoll gradient was used to remove red blood cells, and granulosa cell aggregates were collected, washed and processed for histology, electron microscopy, flow cytometry analysis, cell culture and RNA extraction. Granulosa cell aggregates were found to be homogeneous and free of white blood cells after histological and electron microscopic analysis. White blood cell contamination, measured by flow cytometry, was found to be between 2 and 4%. Polymerase chain reaction analysis revealed expression of known human granulosa cell genes and a white blood cell marker. Human granulosa cells grown in vitro showed flattened fibroblast-like morphology with lipid droplets consistent with previous reports. Cultured cells expressed the FSH receptor. Selection of human granulosa cell aggregates following centrifugation through a Percoll gradient provides an efficient method of selecting granulosa cells, suitable for both molecular and in vitro studies.