Dissemin is shutting down on January 1st, 2025

Published in

CSIRO Publishing, Australian Journal of Chemistry, 9(64), p. 1239, 2011

DOI: 10.1071/ch11155

Links

Tools

Export citation

Search in Google Scholar

MgII, CaII, and CoII Metal-Organic Framework Materials with [Si(p-C6H4CO2)3(p-C6H4CO2H)]3? Struts

Journal article published in 2011 by Robert P. Davies, Paul D. Lickiss ORCID, Karen Robertson, Andrew J. P. White
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Three new metal-organic framework materials [Mg3(LH)2(EtOH)2(H2O)]·(EtOH)4.5(H2O)0.25 (IMP-13Mg), [Co3(LH)2(EtOH)2(H2O)]·(EtOH)3 (IMP-13Co), and [Ca3(LH)2(EtOH)4]·(EtOH)6 (IMP-14) have been prepared from the treatment of silanetetrabenzoic acid (L-H4) with MgII, CoII, and CaII salts respectively. In all cases the silanetetrabenzoic acid has been triply deprotonated and the resultant carboxylate groups assemble with trinuclear metal-based nodes to give (3,6)-connected kgd-type two-dimensional layers. These layers are then extended into the third dimension by coordination of the metal nodes by carboxylic acid groups in adjacent layers. In the case of IMP-13Mg/Co, only alternate L-H connectors and metal nodes are involved in these interlayer interactions, leaving some acid groups free within the structure. However, in IMP-14 all L-H connectors and metal nodes participate in interlayer bonding.