Published in

Oxford University Press, Clinical and Experimental Immunology, 2(175), p. 235-245, 2014

DOI: 10.1111/cei.12227

Links

Tools

Export citation

Search in Google Scholar

CD4+CD25highforkhead box protein 3+ regulatory T lymphocytes suppress interferon-γ and CD107 expression in CD4+ and CD8+ T cells from tuberculous pleural effusions

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Summary Tuberculous pleural effusion is characterized by a T helper type 1 (Th1) profile, but an excessive Th1 response may also cause tissue damage that might be controlled by regulatory mechanisms. In the current study we investigated the role of regulatory T cells (Treg) in the modulation of Th1 responses in patients with tuberculous (TB) pleurisy. Using flow cytometry we evaluated the proportion of Treg (CD4+CD25highforkhead box protein 3+), interferon (IFN)-γ and interleukin (IL)-10 expression and CD107 degranulation in peripheral blood (PB) and pleural fluid (PF) from patients with TB pleurisy. We demonstrated that the proportion of CD4+CD25+, CD4+CD25highFoxP3+ and CD8+CD25+ cells were increased in PF compared to PB samples. Mycobacterium tuberculosis stimulation increased the proportion of CD4+CD25low/negIL-10+ in PB and CD4+ CD25low/negIFN-γ+ in PF; meanwhile, CD25high mainly expressed IL-10 in both compartments. A high proportion of CD4+CD107+ and CD8+CD107+ cells was observed in PF. Treg depletion enhanced the in-vitro M. tuberculosis-induced IFN-γ and CD4+ and CD8+ degranulation responses and decreased CD4+IL-10+ cells in PF. Our results demonstrated that in TB pleurisy Treg cells effectively inhibit not only IFN-γ expression but also the ability of CD4+ and CD8+ cells to degranulate in response to M. tuberculosis.