Published in

Public Library of Science, PLoS Pathogens, 1(11), p. e1004580, 2015

DOI: 10.1371/journal.ppat.1004580

Links

Tools

Export citation

Search in Google Scholar

Differential Reliance on Autophagy for Protection from HSV Encephalitis between Newborns and Adults

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Newborns are more susceptible to severe disease from infection than adults, with maturation of immune responses implicated as a major factor. The type I interferon response delays mortality and limits viral replication in adult mice in a model of herpes simplex virus (HSV) encephalitis. We found that intact type I interferon signaling did not control HSV disease in the neonatal brain. However, the multifunctional HSV protein γ34.5 involved in countering type I interferon responses was important for virulence in the brain in both age groups. To investigate this observation further, we studied a specific function of γ34.5 which contributes to HSV pathogenesis in the adult brain, inhibition of the cellular process of autophagy. Surprisingly, we found that the beclin binding domain of γ34.5 responsible for inhibiting autophagy was dispensable for HSV disease in the neonatal brain, as infection of newborns with the deletion mutant decreased time to mortality compared to the rescue virus. Additionally, a functional beclin binding domain in HSV γ34.5 did not effectively inhibit autophagy in the neonate, unlike in the adult. Type I IFN responses promote autophagy in adult, a finding we confirmed in the adult brain after HSV infection; however, in the newborn brain we observed that autophagy was activated through a type I IFN-independent mechanism. Furthermore, autophagy in the wild-type neonatal mouse was associated with increased apoptosis in infected regions of the brain. Observations in the mouse model were consistent with those in a human case of neonatal HSV encephalitis. Our findings reveal age-dependent differences in autophagy for protection from HSV encephalitis, indicating developmental differences in induction and regulation of this innate defense mechanism after HSV infection in the neonatal brain.