Published in

American Chemical Society, Nano Letters, 2(11), p. 712-716

DOI: 10.1021/nl103841m

Links

Tools

Export citation

Search in Google Scholar

New Bioinspired Membrane Made of a Biological Ion Channel Confined into the Cylindrical Nanopore of a Solid-State Polymer

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A hybrid nanoporous membrane made of a solid-state polymeric thin film in which an ion channel is confined is realized. The primary and extremely encouraging results obtained by confocal fluorescence spectroscopy and ion diffusion measurement demonstrate respectively that (i) the considered ion channel, that is, Gramicidin-A, can be confined selectively inside the nanopores and (ii) the ionic permeability of the membrane is enhanced. Atomistic molecular simulations are also reported and fruitfully compared to the experimental findings.