Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Vehicular Technology, 1(62), p. 50-60, 2013

DOI: 10.1109/tvt.2012.2218840

Links

Tools

Export citation

Search in Google Scholar

Evaluation of fuel-cell range extender impact on hybrid electrical vehicle performance

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The use of electric vehicles (EVs) is advantageous because of zero emission, but their market penetration is limited by one disadvantage, i.e., energy storage. Battery EVs (BEVs) have a limited range, and their batteries take a long time to charge, compared with the time it takes to refuel the tank of a vehicle with an internal combustion engine (ICE). Fuel cells (FCs) can be added to an EV as an additional energy source. These are faster to refill and will therefore facilitate the transition from vehicles running on fossil fuel to electricity. Different EV setups with FC strategies are presented and compared. The results of the setups are presented by range, efficiency, and price. These show the negative effect on the range when purpose-designed setups are driven above the design requirement as the range drops considerably. The simulations also showed the necessity of good FC control when driving in start/stop city cycles. Simulations with the New European Driving Cycle (NEDC) showed that efficiency fell by at least 15% for the FC hybrid EV (FCHEV) when compared with BEVs. ; The use of electric vehicles (EVs) is advantageous because of zero emission, but their market penetration is limited by one disadvantage, i.e., energy storage. Battery EVs (BEVs) have a limited range, and their batteries take a long time to charge, compared with the time it takes to refuel the tank of a vehicle with an internal combustion engine (ICE). Fuel cells (FCs) can be added to an EV as an additional energy source. These are faster to refill and will therefore facilitate the transition from vehicles running on fossil fuel to electricity. Different EV setups with FC strategies are presented and compared. The results of the setups are presented by range, efficiency, and price. These show the negative effect on the range when purpose-designed setups are driven above the design requirement as the range drops considerably. The simulations also showed the necessity of good FC control when driving in start/stop city cycles. Simulations with the New European Driving Cycle (NEDC) showed that efficiency fell by at least 15% for the FC hybrid EV (FCHEV) when compared with BEVs.