Links

Tools

Export citation

Search in Google Scholar

Low power hydrogen gas sensors using electrodeposited PdNi-Si Schottky diodes

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The use of electrodeposited PdNi-Si Schottky barriers as low power Hydrogen sensors is investigated. The Palladium content of the film causes the Hydrogen molecules to dissociate and be absorbed by the film, changing the metal work function and Schottky barrier current. In this work we show that electrodeposited Pd(Ni)-Si Schottky barriers exhibit very low reverse bias currents compared to evaporated Schottky diodes. The Schottky diodes were fabricated on 0.5-1.5 ohmcm 100 n-type Si by electrodeposition of PdNi followed by evaporation of Aluminium contact pads. Electrical measurements at different Hydrogen pressures were performed on back to back Schottky diodes in a vacuum chamber using pure Nitrogen and a 5% Hydrogen-Nitrogen mixture. Very low currents of 1nA were measured in the absence of Hydrogen. Large increases in the currents, upto a factor of 100, were observed upon exposure to different Hydrogen partial pressures. A back to back configuration forms a device that draws extremely low power when idle. The low idle current, simplicity of the fabrication process and ability to easily integrate with conventional electronics proves the suitability of electrodeposited PdNi-Si Schottky barriers as low power Hydrogen sensors.