Links

Tools

Export citation

Search in Google Scholar

Metal catalyst-free growth of carbon nanotubes and their application in field effect transitors

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The metal-catalyst-free growth of carbon nanotubes (CNTs) using chemical vapor deposition and the application in field-effect transistors (FETs) is demonstrated. The CNT growth process used a 3-nm-thick Ge layer on SiO2 that was subsequently annealed to produce Ge nanoparticles. Raman measurements show the presence of radial breathing mode peaks and the absence of the disorder induced D-band, indicating single walled CNTs with a low defect density. The synthesized CNTs are used to fabricate CNTFETs and the best device has a state-of-the-art on/off current ratio of 3×108 and a steep sub-threshold slope of 110 mV/dec.