Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical review B, 24(79), 2009

DOI: 10.1103/physrevb.79.245135

Links

Tools

Export citation

Search in Google Scholar

Nonlinear Control of Tunneling Through an Epsilon-Near-Zero Channel

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The epsilon-near-zero (ENZ) tunneling phenomenon allows full transmission of waves through a narrow channel even in the presence of a strong geometric mismatch. Here we experimentally demonstrate nonlinear control of the ENZ tunneling by an external field, as well as self-modulation of the transmission resonance due to the incident wave. Using a waveguide section near cut-off frequency as the ENZ system, we introduce a diode with tunable and nonlinear capacitance to demonstrate both of these effects. Our results confirm earlier theoretical ideas on using an ENZ channel for dielectric sensing, and their potential applications for tunable slow-light structures.