Published in

Springer Verlag, JETP Letters, 12(90), p. 758-762

DOI: 10.1134/s0021364009240059

Links

Tools

Export citation

Search in Google Scholar

Direct bandgap optical transitions in Si nanocrystals

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The effect of quantum confinement on the direct bandgap of spherical Si nanocrystals has been modelled theoretically. We conclude that the energy of the direct bandgap at the Γ-point decreases with size reduction: quantum confinement enhances radiative recombination across the direct bandgap and introduces its "red" shift for smaller grains. We postulate to identify the frequently reported efficient blue emission (F-band) from Si nanocrystals with this zero-phonon recombination. In a dedicated experiment, we confirm the "red" shift of the F-band, supporting the proposed identification. © 2009 Pleiades Publishing, Ltd.