Published in

Cell Press, Chemistry and Biology, 5(18), p. 569-579, 2011

DOI: 10.1016/j.chembiol.2011.02.017

Links

Tools

Export citation

Search in Google Scholar

Analyzing Airway Inflammation with Chemical Biology: Dissection of Acidic Mammalian Chitinase Function with a Selective Drug-like Inhibitor

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Acidic mammalian chitinase (AMCase) is produced in the lung during allergic inflammation and asthma, and inhibition of enzymatic activity has been considered as a therapeutic strategy. However, most chitinase inhibitors are nonselective, additionally inhibiting chitotriosidase activity. Here, we describe bisdionin F, a competitive AMCase inhibitor with 20-fold selectivity for AMCase over chitotriosidase, designed by utilizing the AMCase crystal structure and dicaffeine scaffold. In a murine model of allergic inflammation, bisdionin F-treatment attenuated chitinase activity and alleviated the primary features of allergic inflammation including eosinophilia. However, selective AMCase inhibition by bisdionin F also caused dramatic and unexpected neutrophilia in the lungs. This class of inhibitor will be a powerful tool to dissect the functions of mammalian chitinases in disease and represents a synthetically accessible scaffold to optimize inhibitory properties in terms of airway inflammation.