Published in

Oldenbourg Verlag, Zeitschrift für Physikalische Chemie, 7-8(226), p. 779-795

DOI: 10.1524/zpch.2012.0275

Links

Tools

Export citation

Search in Google Scholar

Probability densities of a forced probe particle in glass: results from mode coupling theory and simulations of active microrheology

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We investigate the displacements of a probe particle inside a glass, when a strong external force is applied to the probe (active nonlinear microrheology). Calculations within mode coupling theory are presented for glasses of hard spheres and compared to Langevin and Brownian dynamics simulations. Under not too strong forces where the probe remains trapped, the probe density distribution becomes anisotropic. It is shifted towards the direction of the force, develops an enhanced tail in that direction (signalled by a positive skewness), and exhibits different variances along and perpendicular to the force direction. A simple model of an harmonically trapped probe rationalizes the low force limit, with strong strain softening setting in at forces of the order of a few thermal energies per particle radius.