Dissemin is shutting down on January 1st, 2025

Published in

Springer Verlag, European Spine Journal, 10(19), p. 1753-1760

DOI: 10.1007/s00586-010-1424-8

Links

Tools

Export citation

Search in Google Scholar

Proliferation and osteoblastic differentiation of bone marrow stem cells: comparison of vertebral body and iliac crest

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Bone marrow stem cells (BMSCs) can be obtained from the vertebral body (VB) and iliac crest (IC) for augmenting spinal arthrodesis. However, it is still not evaluated, which of the two sites would have a better BMSCs potential on Proliferation and osteoblastic differentiation is still not evaluated. Fourteen patients (10 men and 4 women) undergoing posterolateral lumbar arthrodesis and pedicle screw instrumentation were involved. The mean age was 54.7 years (range 31-75 years). Bone marrow aspirates were obtained from the vertebral body through the bilateral pedicle and were quantified relative to matched, bilateral aspirates from the iliac crest that were obtained from the same patient and at the same time. The mononuclear cell count and concentration of BMSCs were calculated and compared. Proliferation and osteoblastic differentiation of each of the BMSCs were characterized using biochemical and molecular biology techniques. Concentration (cells/mL) of BMSCs from VB and IC were 3.73 × 10(3) and 3.19 × 10(3), respectively (P > 0.05). VB and IC exhibited similar proliferation pattern at 3, 5 and 7 days, but BMSCs from the VB exhibited an increased mineralization staining with Alizarin Red S at 14 days. BMSCs from both anatomic sites expressed comparable levels of CD29, CD34, CD44, CD90 and CD105. VB and IC displayed similar levels of expression of ALP, type I collagen and osterix, but VB expressed higher level of osteocalcin and Runx-2, especially at 14 and 21 days. Our studies show that BMSCs from VB have osteogenic differentiation potential similar to IC. Based on these findings, we suggest that BMSCs from VB would be comparable candidates for osseous graft supplementation especially in spinal fusion procedures.