Published in

American Phytopathological Society, Molecular Plant-Microbe Interactions, 7(14), p. 823-831, 2001

DOI: 10.1094/mpmi.2001.14.7.823

Links

Tools

Export citation

Search in Google Scholar

The Rhizobium GstI protein reduces the NH4 + assimilation capacity of Rhizobium leguminosarum

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We show that the protein encoded by the glutamine synthetase translational inhibitor (gstI) gene reduces the NH4+ assimilation capacity of Rhizobium leguminosarum. In this organism, gstI expression is regulated by the ntr system, including the PII protein, as a function of the nitrogen (N) status of the cells. The GstI protein, when expressed from an inducible promoter, inhibits glutamine synthetase II (glnII) expression under all N conditions tested. The induction of gstI affects the growth of a glutamine synthetase I (glnA-) strain and a single amino acid substitution (W48D) results in the complete loss of GstI function. During symbiosis, gstI is expressed in young differentiating symbiosomes (SBs) but not in differentiated N2-fixing SBs. In young SBs, the PII protein modulates the transcription of NtrC-regulated genes such as gstI and glnII. The evidence presented herein strengthens the idea that the endocytosis of bacteria inside the cytoplasm of the host cells is a key step in the regulation of NH4+ metabolism.