Dissemin is shutting down on January 1st, 2025

Published in

European Respiratory Society, European Respiratory Journal, 4(39), p. 1021-1032

DOI: 10.1183/09031936.00195811

Links

Tools

Export citation

Search in Google Scholar

Interaction of matrix metalloproteinases with pulmonary pollutants: Table 1–

Journal article published in 2012 by M. Dagouassat, S. Lanone ORCID, J. Boczkowski
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An air pollutant consists of any atmospheric substance that may harm humans, animals, vegetation or material. Various air pollutants have been reported, differing in their physicochemical characteristics. They can be grouped into four categories: gaseous pollutants (e.g. ozone, sulfur dioxide, oxides of nitrogen, carbon monoxide and volatile organic compounds), persistent organic pollutants, heavy metals (e.g. cadmium, lead and mercury) and particulate matter (coarse, fine and ultrafine). These pollutants can reach the respiratory system, eliciting pulmonary and/or systemic effects. These effects include inflammation, tissue remodelling and carcinogenesis: all phenomena where matrix metalloproteases (MMPs) play critical roles, given their broad effects on matrix remodelling and modulation of inflammation and cell signalling. Moreover, since expression and activity of MMPs can be induced by such stimuli, the hypothesis has been raised that MMPs could be involved in the health effects of pollutants. Until now, the implication of MMPs in these effects has been studied only for some pollutants and for a restricted selection of MMPs (mainly MMP-1, -2, -9 and -12), while evidence for a link between MMP induction/activation and health effects remains scarce. A larger number of studies is, therefore, needed in order to better understand the implication of MMPs in health effects associated with air pollution.