Dissemin is shutting down on January 1st, 2025

Published in

2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society

DOI: 10.1109/iembs.2011.6091085

Links

Tools

Export citation

Search in Google Scholar

On-line apnea-bradycardia detection using hidden semi-Markov models.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, we propose a detection method that exploits not only the instantaneous values, but also the intrinsic dynamics of the RR series, for the detection of apnea-bradycardia episodes in preterm infants. A hidden semi-Markov model is proposed to represent and characterize the temporal evolution of observed RR series and different pre-processing methods of these series are investigated. This approach is quantitatively evaluated through synthetic and real signals, the latter being acquired in neonatal intensive care units (NICU). Compared to two conventional detectors used in NICU our best detector shows an improvement of around 13% in sensitivity and 7% in specificity. Furthermore, a reduced detection delay of approximately 3 seconds is obtained with respect to conventional detectors.