Published in

American Chemical Society, Journal of Organic Chemistry, 24(72), p. 9283-9290, 2007

DOI: 10.1021/jo7016636

Links

Tools

Export citation

Search in Google Scholar

Synthesis and Host−Guest Studies of ChiralN-Linked Peptidoresorc[4]arenes†

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Four cone resorc[4]arene octamethyl ethers (10, 11, ent-10, and ent-11) tetrafunctionalized at the feet with valyl-leucine [LL- (6); DD- (ent-6)] and leucyl-valine [LL- (9); DD- (ent-9)] methyl esters have been synthesized. These compounds, obtained by conjugation of macrocycle tetracarboxylic acid chlorides with the appropriate terminal amino groups of the above dipeptides, are N-linked peptidoresorc[4]arenes. We found that these macrocycles (M) are capable of recognizing the homologue dipeptides as guests (G), both in solution and in the gas phase, by forming relatively stable host-guest complexes ([MâG]), resistant to chromatographic purification but not to heating. Complexation phenomena between M and G in solution were investigated by NMR methods, including NMR DOSY experiments, for the detection of translational diffusion. Heteroassociation constants of 2030 and 186 M-1 were obtained by the Foster- Fyfe method for the complexes [10â6] and [10âent-6], respectively, the latter being comparable to the self-association constant of dipeptide itself. Conversely, the structural features of the proton-bound complexes [MâHâGn]+ (n ) 1, 2), generated in the gas phase by electrospray ionization mass spectrometry (ESI-MS), were investigated by collision-induced dissociation (CID) experiments. In both cases, the four N-linked peptidoresorc[4]arenes were shown to act as synthetic receptors and to recognize the homologue dipeptide by means of hydrogen bonds.