Published in

Elsevier, Brain Research, 1-2(1036), p. 1-6

DOI: 10.1016/j.brainres.2004.11.064

Links

Tools

Export citation

Search in Google Scholar

Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate-cysteine ligase activity

Journal article published in 2005 by Me E. Gegg ORCID, Jb B. Clark, Sjr J. R. Heales
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The antioxidant glutathione (GSH) plays an important role in protecting the mitochondrial electron transport chain (ETC) from damage by oxidative stress in astrocytes and neurones. Neurones co-cultured with astrocytes have greater GSH levels, compared to neurones cultured alone, leading to the hypothesis that astrocytes play a key role in brain GSH metabolism by supplying essential GSH precursors to neurones. A previous study has postulated that damage to the ETC following exposure to reactive nitrogen species (RNS) is less in co-cultured neurones, compared to neurones cultured alone, because of the greater GSH levels in the former cells. To investigate this further, primary culture rat neurones were co-cultured with either rat astrocytes activated with IFN-gamma and LPS to produce NO, or NO-generating astrocytes that had been depleted of intracellular GSH by 87% following incubation with the GSH synthesis inhibitor L-buthionine-S,R-sulfoximine (L-BSO). Neurones incubated with NO-generating astrocytes depleted of GSH were unable to elevate GSH levels, unlike neurones co-cultured with NO-generating astrocytes. Complexes II + III and IV of the neuronal ETC were significantly inhibited following exposure to NO-generating astrocytes depleted of GSH. No ETC damage was observed in neurones co-cultured with NO-generating astrocytes. Although neurones co-cultured with GSH depleted astrocytes did not increase cellular GSH levels, the activity of glutamate cysteine ligase (GCL), the rate-limiting enzyme of GSH synthesis, was increased by 218%, compared to neurones cultured with control astrocytes. This suggests that neuronal GCL activity could be modulated when GSH metabolism is inhibited in neighboring astrocytes. (c) 2005 Elsevier B.V. All rights reserved.