Published in

American Association for the Advancement of Science, Science, 6007(330), p. 1104-1107, 2010

DOI: 10.1126/science.1193004

Links

Tools

Export citation

Search in Google Scholar

PiggyBac Transposon Mutagenesis: A Tool for Cancer Gene Discovery in Mice

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon/transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed the unique qualities of PiggyBac for genome-wide mutagenesis and discovered many cancer genes not identified in previous retroviral or Sleeping Beauty transposon screens, including Spic, which encodes a PU.1-related transcription factor, and Hdac7, a histone deacetylase gene. PiggyBac and Sleeping Beauty have different integration preferences. To maximize the utility of the tool, we engineered 20 mouse lines to be compatible with both transposases in constitutive, tissue- or temporal-specific mutagenesis. Mice with different transposon types, copy numbers and chromosomal locations support wide applicability.