Published in

American Chemical Society, Bioconjugate Chemistry, 4(21), p. 671-678, 2010

DOI: 10.1021/bc900468v

Links

Tools

Export citation

Search in Google Scholar

In Situ Growth of Side-Chain PEG Polymers from Functionalized Human Growth Hormone—A New Technique for Preparation of Enhanced Protein−Polymer Conjugates

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The application of atom transfer radical polymerization (ATRP) for preparation of a novel class of protein-polymer bioconjugates is described, exemplified by the synthesis of a recombinant human growth hormone (rh-GH) poly(ethylene glycol) methyl ether methacrylate (PEGMA) hybrid. The rh-GH protein was activated via a bromo-ester functionalized linker and used as a macroinitiator to polymerize the hydrophilic monomer PEGMA under solely aqueous conditions at 4 degrees C. ATRP conditions resulted in controlled polymer growth from rh-GH with low-polydispersity polyPEGMA chains. The rh-GH PEGMA product exhibited properties consistent with the presence of attached hydrophilic polymer chains, namely, high stability to denaturation and proteolysis. The polymerization conditions and conjugation proceeded with retention of the biological activity of the hormone. The rh-GH PEGMA was administered subcutaneously to rats and the activity compared to native rh-GH. The rh-GH PEGMA exhibited similar activity as the native rh-GH in vivo when a daily dose of 40 microg was administered. However, when a higher dose of 120 microg was administered with 3 days between injections the bioavailability of the rh-GH PEGMA was significantly better than that of the native. The results therefore demonstrate that ATRP can be successfully used as a general alternative approach to direct polymer conjugation, namely, PEGylation, to produce PEG-like protein conjugates. This technique can be exploited to design and synthesize protein-polymer derivatives with tailored therapeutic properties.