Published in

American Chemical Society, Bioconjugate Chemistry, 1(19), p. 349-357, 2007

DOI: 10.1021/bc700312y

Links

Tools

Export citation

Search in Google Scholar

Flurbiprofen Derivatives in Alzheimer’s Disease: Synthesis, Pharmacokinetic and Biological Assessment of Lipoamino Acid Prodrugs

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Flurbiprofen (FLU) lipophilic prodrugs with lipoamino acids (LAA) 6a- e were synthesized for brain delivery. Chemical and plasmatic stability of prodrugs 6a- e as well as pharmacokinetic distribution studies for the prodrugs 6b and 6d were carried out. FLU prodrugs 6a- e were compared to the parent drug for their ability to inhibit binding of [F-18]FDDNP to in vitro formed beta-amyloid protein (Abeta fibrils). FLU-LAA conjugates showed a typical prodrug stability profile, being stable in PBS at pH 7.4 and releasing the active drug in plasma. Compound 6d yielded a slow accumulation of FLU in the brain. In the in vitro inhibition assay, all prodrugs except for the prodrug with the longest alkyl side chain ( 6e) were effective as inhibitors of [F-18]FDDNP binding to Abeta fibrils with EC50 values in the 10-300 nM range. The different brain accumulation kinetics shown by FLU and its LAA conjugate 6d suggested a possible slow-releasing activity of FLU by these prodrugs in the brain or a differential pharmacological effect deserving further, detailed studies on their biodistribution and pharmacological profile.