Published in

Rockefeller University Press, Journal of Experimental Medicine, 1(213), p. 75-92, 2015

DOI: 10.1084/jem.20142350

Links

Tools

Export citation

Search in Google Scholar

XCR1+ dendritic cells promote memory CD8+ T cell recall upon secondary infections with Listeria monocytogenes or certain viruses

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Naive CD8+ T cell priming during tumor development or many primary infections requires cross-presentation by XCR1+ dendritic cells (DCs). Memory CD8+ T lymphocytes (mCTLs) harbor a lower activation threshold as compared with naive cells. However, whether their recall responses depend on XCR1+ DCs is unknown. By using a new mouse model allowing fluorescent tracking and conditional depletion of XCR1+ DCs, we demonstrate a differential requirement of these cells for mCTL recall during secondary infections by different pathogens. XCR1+ DCs were instrumental to promote this function upon secondary challenges with Listeria monocytogenes, vesicular stomatitis virus, or Vaccinia virus, but dispensable in the case of mouse cytomegalovirus. We deciphered how XCR1+ DCs promote mCTL recall upon secondary infections with Listeria. By visualizing for the first time the in vivo choreography of XCR1+ DCs, NK cells and mCTLs during secondary immune responses, and by neutralizing in vivo candidate molecules, we demonstrate that, very early after infection, mCTLs are activated, and attracted in a CXCR3-dependent manner, by NK cell–boosted, IL-12–, and CXCL9-producing XCR1+ DCs. Hence, depending on the infectious agent, strong recall of mCTLs during secondary challenges can require cytokine- and chemokine-dependent cross-talk with XCR1+ DCs and NK cells.