Published in

Mary Ann Liebert, Tissue Engineering -Larchmont-, 7(13), p. 1455-1468, 2007

DOI: 10.1089/ten.2006.0381

Links

Tools

Export citation

Search in Google Scholar

Identification and characterization of a novel prespheroid 3-dimensional hepatocyte monolayer on galactosylated substratum

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Three-dimensional (3D) hepatocyte spheroids mimicking the structural and functional characteristics of hepatocytes in vivo were self-assembled onto a galactosylated polyethylene terephthalate (PET) substratum, and the dynamic process of spheroid formation was investigated using time-lapse confocal microscopy. Hepatocytes cultured on this galactosylated substratum formed small cell-aggregates within 12 h, which gradually merged into "island-like" clusters at approximately 1 day and spread to form prespheroid monolayer within 2 days; the prespheroid monolayer was stretched to fold into compact and larger 3D spheroids after 3 days. We compared the expressions of F-actin (cytoskeleton), phosphorylated focal adhesion kinase (p-FAK, cell-substratum interactions) and E-cadherin (cell-cell interactions) during the dynamic process of 3D hepatocyte spheroid formation with the dynamic process of 2D hepatocyte monolayer formation on collagen substratum. Hepatocytes in the prespheroid monolayer stage exhibited the strongest cell-substratum interactions of all 4 stages during spheroid formation with cell-cell interactions and F-actin distribution comparable with those of the 3D hepatocyte spheroids. The prespheroid monolayer also exhibited better hepatocyte polarity (multidrug resistance protein 2) and tight junction (zonula occludens-1) formation, more-differentiated hepatocyte functions (albumin production and cytochrome P450 1 A activity), and higher sensitivity to hepatotoxicity than the conventional 2D hepatocyte monolayer. The transient prespheroid 3D monolayer could be stabilized on a hybrid glycine-arginine-glycine-aspartic acid-serine (GRGDS)/galactose-PET substratum for up to 1 week and destabilized to form 3D spheroids in excess soluble GRGDS peptide.