Published in

Elsevier, Journal of Lipid Research, 5(51), p. 1125-1133, 2010

DOI: 10.1194/jlr.m003061

Links

Tools

Export citation

Search in Google Scholar

Stereoselective epoxidation of the last double bond of polyunsaturated fatty acids by human cytochromes P450

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Cytochromes P450 (CYPs) metabolize polyunsaturated long-chain fatty acids (PUFA-LC) to several classes of oxygenated metabolites. Through use of human recombinant CYPs, we recently showed that CYP1A1, -2C19, -2D6, -2E1, and -3A4 are mainly hydroxylases, whereas CYP1A2, -2C8, -2C9, and -2J2 are mainly epoxygenases of arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), respectively. It is worth noting that the last double bond of these PUFAs, i.e., ω6 in AA or ω3 in EPA and DHA, respectively, was preferentially epoxidized. In this study, we have characterized the stereoselectivity of this epoxidation reaction by comparison with the PUFA-LC epoxide stereoisomers obtained from the enantioselective bacterial CYP102A1 F87V. The stereoselectivity of the epoxidation of the last olefin of AA (ω6), EPA (ω3), or DHA (ω3) differed between the CYP isoforms but was similar for EPA and DHA. These data give additional insight into the PUFA-LC epoxide enantiomers generated by the hepatic CYPs.