Published in

Wiley, Journal of Orthopaedic Research, p. n/a-n/a

DOI: 10.1002/jor.23033

Links

Tools

Export citation

Search in Google Scholar

Identification of novel osteochondrosis Associated genes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

During the early stages of articular osteochondrosis, cartilage is retained in subchondral bone, but the pathophysiology of this condition of growing humans and domestic animals is poorly understood. A subtractive hybridization study was undertaken to compare gene expression between the cartilage of early experimentally induced equine osteochondrosis lesions and control cartilage. Of the many putative differentially expressed genes identified, eight were confirmed by quantitative PCR analysis as differentially expressed, in addition to those already known to be associated with early lesions. Genes encoding vacuolar H(+)-ATPase V0 subunit d2 (ATP6V0D2), cathepsin K, integrin-binding sialoprotein, integrin αV, low density lipoprotein receptor-related protein 4, lumican, osteopontin, and thymosin β4 (TMSB4) were expressed at higher levels in lesions than in control cartilage. These genes included 34 genes not previously identified in cartilage. Some genes identified as associated with early lesions are known chondrocyte hypertrophy-associated genes, and in transmission electron microscopy studies normal hypertrophic chondrocytes were observed in lesions. Differential expression of ATP6V0D2 and TMSB4 in the cartilage of early naturally occurring osteochondrosis lesions was confirmed by immunohistochemistry. These results identify novel osteochondrosis-associated genes and provide evidence that articular osteochondrosis does not necessarily result from failure of chondrocytes to undergo hypertrophy.