Published in

Wiley, Advanced Functional Materials, 14(26), p. 2379-2386, 2015

DOI: 10.1002/adfm.201502274

Links

Tools

Export citation

Search in Google Scholar

Single Crystal-Like Performance in Solution-Coated Thin-Film Organic Field-Effect Transistors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In electronics, the field-effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications requires stable and ideal electrical characteristics over a wide range of temperatures and environments. Solution processing, using printing or coating techniques, has been explored to manufacture organic field-effect transistors (OFET) on flexible carriers, enabling radically novel electronics applications. Ideal electrical characteristics, in organic materials, are typically only found in single crystals. Tiresome growth and manipulation of these hamper practical production of flexible OFETs circuits. To date, neither devices nor any circuits, based on solution-processed OFETs, has exhibited an ideal set of characteristics similar or better than todays FET technology based on amorphous silicon. Here, bar-assisted meniscus shearing of dibenzo-tetrathiafulvalene to coat-process self-organized crystalline organic semiconducting domains with high reproducibility is reported. Including these coatings as the channel in OFETs, electric field and temperature-independent charge carrier mobility and no bias stress effects are observed. Furthermore, record-high gain in OFET inverters and exceptional operational stability in both air and water are measured. ; Funding Agencies|ERC [StG 2012-306826]; Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN); DGI (Spain) [BE-WELL CTQ2013-40480-R]; Generalitat de Catalunya [2014-SGR-17]; Advanced Functional Materials Center at Linkoping University; Onnesjo Foundation; Knut and Alice Wallenberg Foundation; Swedish Foundation for Strategic Research (SSF); Universidad Tecnica de Ambato; Secretaria de Educacion Superior, Ciencia, Tecnologia e Innovacion